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1. Data Documentation, Sources, and Availability 

 

Comprehensive technical documentation describing the second phase of the Climate change 

Impacts and Risk Analysis (CIRA2.0) modeling framework, inputs, and limitations is publicly 

available (USEPA 2017). Each combination of the two RCPs and five GCMs used in this work 

was downscaled from the native GCM spatial resolution to a 1/16 degree latitude and longitude 

scale (an approximately 6.25 km grid) over the contiguous US (USBR et al. 2016).  The 

statistical downscaling technique, LOCA (LOcalized Constructed Analogs), uses a multi-scale 

spatial matching scheme to pick appropriate analog days from observations.  The LOCA dataset 

provides daily projections through 2100 for three variables: daily maximum temperature, daily 

minimum temperature, and daily precipitation (see USBR et al. 2016 for more details). 

 

Population projection data relies on US national estimates under the Median Variant Projection 

(UN 2015), and county-level population projections derived using the Integrated Climate and 

Land Use Scenarios version 2 (ICLUSv2) model (Bierwagen et al. 2010; USEPA 2017b). The 

spatial pattern of population change in ICLUSv2 relies on assumptions regarding fertility, 

migration rate, and international immigration – these were parameterized based on the Shared 

Socioeconomic Pathway (SSP) 2, which suggests medium levels of fertility, mortality, and 

international immigration (O’Neill et al. 2014).1 Where necessary for economic valuation, we 

used the Emissions Predictions and Policy Analysis (EPPA, version 6; Chen et al. 2015) model 

was run to generate a projection of economic growth (i.e., gross domestic product, or GDP). 

 

  

 
1 O'Neill, B. C., E. Kriegler, K. Riahi, K. L. Ebi, S. Hallegatte, T. R. Carter, R. Mathur, and D. P. v. Vuuren. 

2014.  A new scenario framework for climate change research: the concept of shared socioeconomic pathways, 

Climatic Change, doi:10.1007/s10584-013-0905-2. 
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Data Type Description Data Documentation and Availability 

a.  Data Used in this Study 

Bias-corrected and 
downscaled 
temperature and 
precipitation 
projections  

Localized Constructed 
Analogs (LOCA) contain daily 
temperature (max and min) 
and precipitation data for a 
range of CMIP5 climate 
scenarios, baseline, and 
projection years. 

U.S. Bureau of Reclamation, Climate Analytics Group, Climate 
Central, Lawrence Livermore National Laboratory, Santa Clara 
University, Scripps Institution of Oceanography, U.S. Army Corps 
of Engineers, and U.S. Geological Survey, 2016: Downscaled 
CMIP3 and CMIP5 Climate Projections: Release of Downscaled 
CMIP5 Climate Projections, Comparison with Preceding 
Information, and Summary of User Needs. Data available at: 
http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/. 

Observed 
meteorology   

Historical climate data for 
temperature, precipitation, 
and other weather variables. 
 
Reference to spatial 
coverages used in the Yue et 
al. (2013) work were used to 
ensure proper replication of 
the area burned calculations 
from that study.  These rely 
on NOAA GSOD and USHCN 
datasets.  

Livneh, B., et al. A spatially comprehensive, hydrometeorological 
data set for Mexico, the U.S., and Southern Canada 1950-2013. 
Scientific Data 2, 150042 (2015). Available online at: 
https://data.nodc.noaa.gov/cgi-
bin/iso?id=gov.noaa.nodc:0129374  
Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 
50-yr high-resolution global dataset of meteorological forcings 
for land surface modeling. J. Climate, 19, 3088-3111 Global 
Meteorological Forcing Dataset for Land Surface Modeling. 
Available online at: 
http://hydrology.princeton.edu/data.pgf.php  
NOAA Global Surface Summary of the Day (GSOD) data available 
at: https://data.nodc.noaa.gov/cgi-
bin/iso?id=gov.noaa.ncdc:C00516  
NOAA United States Historical Climatology Network (USHCN) 
data available at: https://www.ncdc.noaa.gov/data-access/land-
based-station-data/land-based-datasets/us-historical-
climatology-network-ushcn  
      

Ecoregion 
designations for 
fire emissions 
modeling 

Ecoregion delineations were 
adapted from Bailey et al. 
(1994) to ensure consistency 
with LOCA data – see Figure 
S1 below and accompanying 
text below. 

Bailey, R., P. Avers, T. King, and W. McNab (1994), Ecoregions 
and subregions of the United States (map), technical report, 
USDA For. Serv., Washington, D. C. 
 

Fuelbed and 
Western wildfire 
emissions data 

Biomass consumption by 
wildfire estimated using 
results of Spracklen et al. 
(2009) and biofuel burning 
emissions factors from 
Andreae and Merlet (2001). 

Spracklen, D. V., Mickley, L. J., Logan, J. A., Hudman, R. C., 
Yevich, R., Flannigan, M. D., & Westerling, A. L. (2009). Impacts 
of climate change from 2000 to 2050 on wildfire activity and 
carbonaceous aerosol concentrations in the western United 
States. Journal of Geophysical Research: Atmospheres, 114(D20). 
Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and 
aerosols from biomass burning. Global biogeochemical 
cycles, 15(4), 955-966. 

Baseline non-
Western wildfire 
emissions 

Eastern U.S. fire emissions 
from GFED4 dataset; Eastern 
and Western U.S. non-wildfire 
and anthropogenic emissions 
from USEPA National 
Emissions Inventory (NEI) 
2011 data. 

Global Fire Emissions Dataset (GFED) available at: 
https://www.globalfiredata.org/index.html  
USEPA National Emissions Inventory (NEI) data available at: 
https://www.epa.gov/air-emissions-inventories/national-
emissions-inventory-nei  

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374
http://hydrology.princeton.edu/data.pgf.php
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00516
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00516
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/us-historical-climatology-network-ushcn
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/us-historical-climatology-network-ushcn
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/us-historical-climatology-network-ushcn
https://www.globalfiredata.org/index.html
https://www.epa.gov/air-emissions-inventories/national-emissions-inventory-nei
https://www.epa.gov/air-emissions-inventories/national-emissions-inventory-nei
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Data Type Description Data Documentation and Availability 

Atmospheric 
modeling  

Open access GEOS-Chem 
model version 12.5.0 
(September 2019). 

Model and documentation available at: 
http://acmg.seas.harvard.edu/geos/  

Baseline health 
effect incidence 
rates 

County-level baseline 
incidence rates were 
obtained from BenMAP-CE 
v.1.4.14 for five-year age 
groups and were originally 
derived from CDC WONDER 
(U.S. EPA, 2018b). CDC 
mortality rates were 
projected only through 2060, 
so we apply 2060 mortality 
rates to the 2090 era 
analyses. Baseline morbidity 
rates are available only for 
2014, so these rates are 
assumed constant across all 
eras. 

U.S. EPA. (2018a). Environmental Benefits Mapping and Analysis 
Program: Community Edition (BenMAP-CE) User Manual and 
Appendices. Washington, DC. 
U.S. EPA. (2018b). Environmental Benefits Mapping and Analysis 
Program: Community Edition (BenMAP-CE) v 1.4.14. 
Washington, DC. 
 
Baseline incidence data presented in in tables below. 
 

Population and 
developed land 
projections 

Median Variant Projection of 
the United Nation’s (UN) 
2015 World Population 
Prospects dataset used to 
project future U.S. population 
for 2015-2100. 

United Nations, 2015: World Population Prospects: The 2015 
Revision. United Nations, Department of Economic and Social 
Affairs, Population Division. Data available at: 
https://population.un.org/wpp/  

U.S. national and county-level 
population figures from 2000-
2015 

U.S. Census Bureau, cited 2017: Population Estimates Program. 
Available online at https://www.census.gov/programs-
surveys/popest.html 

County-scale population and 
developed land projections 
from the Integrated Climate 
and Land-Use Scenarios 
model (version 2) 

Population projection documentation available at this link 
https://www.epa.gov/iclus 
EPA, 2017: Updates to the Demographic and Spatial Allocation 
Models to Produce Integrated Climate and Land Use Scenarios 
(ICLUS) (Version 2). U.S. Environmental Protection Agency, 
Washington, DC, EPA/600/R-16/366F. Available online at 
https://cfpub.epa.gov/ncea/iclus/recordisplay.cfm?deid=322479 

Domestic economic 
growth 

Projection of future gross 
domestic product from the 
Emissions Predictions and 
Policy Analysis (EPPA, v6) 
model.  
 
The projection of GDP growth 
through 2040 from the 2016 
Annual Energy Outlook 
reference case is used to 
calibrate EPPA-6, and is also 

Chen, Y.-H. H., et al. The MIT EPPA6 Model: Economic Growth, 
Energy Use, and Food Consumption. MIT Joint Program on the 
Science and Policy of Global Change, Report 278, Cambridge, 
MA (2015) 
 
U.S. Energy Information Administration, 2016: Annual Energy 
Outlook. Available online at 
https://www.eia.gov/outlooks/archive/aeo16/  

http://acmg.seas.harvard.edu/geos/
https://population.un.org/wpp/
https://www.census.gov/programs-surveys/popest.html
https://www.census.gov/programs-surveys/popest.html
https://www.epa.gov/iclus
https://cfpub.epa.gov/ncea/iclus/recordisplay.cfm?deid=322479
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Data Type Description Data Documentation and Availability 

then combined with EPPA-6 
baseline assumptions for 
other regions and time 
periods 

Economic valuation 
of health burden 
estimates 

Economic value of projected 
health impacts based on 
recommendations in federal 
guidance for economic 
analyses (U.S. EPA, 2014) and 
valuation functions included 
in the BenMAP-CE model. For 
mortality endpoints, the 
EPA’s Guidelines for 
Preparing Economic Analyses 
recommends a VSL of $7.9 
million (2008$) based on 
1990 incomes (U.S. EPA, 
2014).  
For morbidity endpoints, we 
use cost-of-illness estimates 
for each endpoint type 
available in BenMAP-CE.  

U.S. EPA. (2018a). Environmental Benefits Mapping and Analysis 
Program: Community Edition (BenMAP-CE) User Manual and 
Appendices. Washington, DC. 
U.S. EPA. (2018b). Environmental Benefits Mapping and Analysis 
Program: Community Edition (BenMAP-CE) v 1.4.14. 
Washington, DC. 
 
To create a VSL using 2015$ and based on 2010 incomes, the 
standard value was adjusted for inflation and income growth 
based on the approach described in EPA’s BenMAP-CE model 
and its documentation (U.S. EPA, 2018a,b). The resulting value, 
$9.7 million for 2010 (2015$), was adjusted to future years by 
assuming an income (GDP per capita) elasticity of VSL of 0.4.  
Applying this standard approach yields the following VSL values: 
$12.4 million in 2050, and $15.2 million in 2090 (in undiscounted 
2015$).  
 

Price deflator Dollar years are adjusted to 
$2015 using the U.S. Bureau 
of Economic Affairs’ Implicit 
Price Deflators for Gross 
Domestic Product, Table 
1.1.9. 

U.S. Bureau of Economic Affairs’ Implicit Price Deflators for 
Gross Domestic Product, Table 1.1.9. See “National Income and 
Product Accounts Tables” at https://bea.gov/national/index.htm  

b.  Data Produced by This Study 

Full results and 
analysis code 

Shape files for LOCA 1 x 1 
degree grid. 

Data will be posted to ScienceHub and EPA’s Environmental 
Dataset Gateway (EDG) upon publication of the manuscript.   

Shape files with area burned 
and emissions results. 

Shape files with GEOS-Chem 
modeling results 

BenMAP-CE configuration 
and results files 

 
 

https://bea.gov/national/index.htm
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2. Overall Methodological Approach and Area Burned Analyses 

 

The five climate models applied here were from the Canadian Centre for Climate Modeling and 

Analysis (CanESM2, Von Salzen et al.2013); the National Center for Atmospheric Research 

(CCSM4, Gent et al. 2011, Neale et al. 2013); the NASA Goddard Institute for Space Studies 

(GISS-E2-R, Schmidt et al. 2006); the Meteorological Office at the Hadley Centre (HadGEM2-

ES, Collins et al., 2011; Davies et al. 2005); and the Atmosphere and Ocean Research Institute, 

National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and 

Technology (MIROC5, Watanabe et al. 2010).   

 

As the GCMs have very coarse spatial resolution, we use spatially downscaled climatic variables 

from the LOcalized Constructed Analogs (LOCA) dataset for each RCP and GCM combination.  

The LOCA dataset provides daily projections through 2100 at a 1/16 degree resolution (~6.25 km) 

for three variables: daily maximum temperature (tmax), daily minimum temperature (tmin), and 

daily precipitation (see U.S. EPA 2017a for more details).  

 

It is important to place wildfire activity that occurs in the western U.S. (31°–49°N, 101°–125°W) 

in the context of total wildfire activity across the contiguous U.S. As part of the Monitoring Trends 

in Burn Severity (MTBS) project, the USGS Center for Earth Resources Observation and Science 

(EROS) and the USDA-FS Remote Sensing Applications Center compiled fire data from federal 

agency databases (ICS 209) and state databases, then used Landsat remotely-sensed imagery data 

to map burn severity and perimeters of all large fires in the U.S. from 1984 to 2016. This dataset 

is limited by its exclusion of small fires (fires smaller than 500 acres in the east and smaller than 

1,000 acres in the west). However, even with the exclusion of smaller fires, the dataset captured 

over 95% of area burned when compared to ground-based data in 2004. Hence, the MTBS data is 

used to estimate the fraction of contiguous U.S. wildfire activity that has historically occurred in 

the western U.S., both with respect to number of fires and area burned.  

 

Prescribed wildfires and unknown wildfire types were excluded from the dataset before 

calculations spanning the baseline years (1986-2005) were performed. With respect to the number 

of fires, on average, there were 2.4 times as many fires in the West than in the East from 1986-

2005. Put differently, 70% of fires in the contiguous U.S. occurred in the western U.S. on an 

average annual basis. The differential size thresholds for inclusion in the MTBS dataset result in 

an underestimate of contributions of Western fires, given that Western fires must be double the 

size of Eastern fires to be counted. Thus, not only does the West have a higher number of fires 

than the East, but the West also has larger fires. Accordingly, there were 5.6 times as many acres 

burned in the West than in the East on average, and 81% of area burned was located in the Western 

U.S. on an average annual basis from 1986-2005. In effect, this analysis captures a large fraction 

of contiguous U.S. wildfire activity in examining the western U.S. 

 

The present analysis builds upon existing research relating climatic conditions to annual area 

burned to estimate the future health burden associated with wildfire emissions in the western 

U.S. The flow chart in main text Figure 1 summarizes our approach and highlights the 

components that are unique to the present analysis and those that have been adopted from earlier 
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research. In this supplement we have reproduced key inputs from Yue et al., (2013), Spracklen et 

al. (2009) and Andre and Merlet (2001) that were relied on for this analysis.  

 

The spatial and temporal disaggregation described in step 3 of main text Figure 1 was adopted 

from Yue et al., (2013). As part of that process, the annual area burned in each ecoregion is 

distributed across the landscape and each month of the wildfire season while maintaining historic 

patterns of wildfire activity. Table S3 from Yue et al. (2013) (found here: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763857/#FN3 ) provides the historic burn 

fraction for each ecosystem that was used as part of the spatial disaggregation process. 

 

 

 

Yue et al. (2013) presents two alternative methodologies for relating climate variables to wildfire 

area burned in the western U.S. The first approach expands on earlier work conducted by 

Spracklen et al. (2009) and utilizes a stepwise regression analysis to relate observed annual area 

burned in each ecoregion to several meteorological predictor variables and fire indexes. The 

second approach is a physical parameterization of area burned based on monthly mean 

temperature, relative humidity and precipitation. The two approaches differ not only with respect 

to the specific climate variables utilized but also by their temporal resolution – the regression 

models predict annual area burned, while the parameterization estimates monthly area burned.  

Here, we use the six ecoregion-specific regression models because their predictions of present-day 

area burned are more consistent with observations than the parameterized model in every 

ecoregion other than the Great Plains.  We modified and re-estimated the regression model for 

Rocky Mountain Forest ecoregion, as described in the section 3 below – the result is summarized 

in Table S1. The regressions and R2 statistics for five of the ecoregions (Pacific Northwest, 

California Coastal Shrub, Desert Southwest, Nevada Mnt./Semi-Desert, and Eastern Rocky 

Mtn./Great Plains)_are used directly from Yue et al., 2013, and are available in Table 1 here: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763857/#FN3 ).  Of particular importance is 

that the regression models perform better than prior work in the Pacific Northwest and California 

Coastal Shrub ecoregions. These two ecoregions contain a large percentage of total population in 

the western United States and are therefore expected to comprise a significant proportion of the 

future health impacts associated with wildfire smoke.  

Table S1. Modified wildfire regression model for the Rocky Mountain Forest ecoregion  

Ecoregion Regression Modela R2 

Rocky Mtn. Forest -9.4×105 *(Precipitation during Fire Season) – 13.5×105 45% 

 

 

 

Overall, our regressions capture a substantial amount of interannual variability in area burned that 

can be attributed to climatic variation, though they generally underestimate peak years across all 

ecoregions (Main Text Figure 2 and Table S2).  The largest differences are observed for the Great 

Plains region, where we underestimate area burned by a factor of about 2.7.  Model performance 

is much better for the Nevada Mountains, Rocky Mountain Forest, Pacific Northwest, and Desert 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763857/#FN3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763857/#FN3
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Southwest, and California Coastal regions, which account for most of historical area burned and 

dry biomass consumption.   

The climate variables and fire indexes required for each regression model were calculated using 

daily LOCA data, consistent with other CIRA analyses.  To be consistent with Yue et al. (2013) 

models, only LOCA grid cells that intersect with the meteorological observations used in Yue et 

al. (2013) were used (Fig. S1), These meteorological observations include the Global Surface 

Summary of the Day (GSOD) sites or United States Historical Climatology Network (USHCN) 

sites, depending on the type of climate variable – temperature and precipitation variables were 

calculated from USHCN sites and relative humidity variables and fire indexes were calculated 

from GSOD sites. 

 

 

Figure S1. Western U.S. ecoregions and ecosystems (map generated from descriptions and 

contour mapping from Bailey et al., 1994, translated to analytic grid form and augmented with 

meteorological site locations by the authors). The color shading within each ecoregion is related 

to the historic burn fraction of each ecosystem (i.e., ecosystems with a larger fraction of area 

burned are represented with darker colors). The United States Historical Climatological Network 
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(USHCN) and Global Surface Summary of the Day (GSOD) meteorological sites are also 

depicted – climatic data are important in differentiating large scale divisions of ecosystems and 

ecoregions, which are then further differentiated based on vegetation and terrain. 

 

Total biomass consumed (step 5 in the main text Figure 1 flow chart) was estimated using the 

assumptions outlined in Spracklen et al., (2009). The fractional fuel consumption as a function of 

fire severity is provided in Table 4 in Spracklen et al. (2009) (available here: 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008jd010966 ) and addresses fuel 

consumption by burn severity for litter and light fuels, medium fuels, heavy fuels, duff, grass, 

shrub, and canopy.  Similar to Yue et al., (2013) we assumed that 25% of the land area burns 

with high, medium and low intensity and that 25% of the area is left unburned.  

  

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008jd010966
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Finally, the BC and OC emissions were estimated by applying the biofuel burning emissions 

factors from Table 1 of Andreae and Merlet (2001) – 0.59 g/kg for BC and 4.0 g/kg for OC. 

 

 

3. Relative Humidity and Rocky Mountain Ecoregion Regression 

 

A complete estimate of area burned by wildfires requires the input of three additional climate 

variables: relative humidity (RH), wind speed and air pressure. We expand the LOCA climate 

dataset to include these variables using a binning approach described in the Technical Appendix 

to U.S EPA (2017a). Briefly, the binning approach effectively associate historical time series of 

climate variables to future projections. For example, to project future RH, we associated RH with 

temperature and precipitation based on historical daily data, additional climate variables, 

including relative humidity, wind speed and air pressure, using a binning approach.  Relative 

humidity (RH), for example, is required to estimate key inputs for the area burned regressions, in 

particular the Duff Moisture Code (DMC) and Build-Up Index (BUI) variables, but RH is not 

available from the LOCA downscaled dataset.  The historical pattern of relative humidity cannot 

be simply repeated to fill in the missing LOCA values, as the arrival times of the LOCA tmax, 

tmin, and precipitation outputs are drawn from the GCM projections rather than the historical 

time series. To fill in the missing values, we use a binning approach, which starts with the 

assumption that there is some relationship between temperature/precipitation and relative 

humidity.  We effectively associate historical daily humidity with daily historical temperature 

and precipitation, and then used those binned associations to assign projected RH in LOCA 

future daily time series.  Historical humidity for our study area is available from the Princeton 

Land Surface Hydrology Group (Sheffield et al. 2006).   

 

Yue et al. originally calculated relative humidity (RH) as a function of daily mean temperature and 

dew point. This approach is different than the one utilized in the LOCA dataset, and resulted in 

minor differences in these regression variables that were amplified by the area burned equations. 

To correct for this bias, a set of regression equations were developed to relate each RH predictor 

variable with temperature and precipitation variables. Then the RH variables were recalculated 

using those models and the LOCA temperature and precipitation data. While the fire indexes also 

rely on estimates of daily RH, the effect of these differences was not as significant for those 

variables, and they were not recalculated. The exception to this was the Rocky Mountain 

ecoregion, where a threshold effect related to the annual Duff Moisture Code index resulted in 

consistent underestimation of area burned. As a result, the regression model for that ecoregion was 

re-derived using the same stepwise regression approach utilized by Yue et al., but using only 

temperature and precipitation predictor variables.  

Additional analysis was performed to improve the performance of the Rocky Mountain 

ecoregion area burned regressions using LOCA inputs. 
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a. Linear regression plot (Adj. R2 = 0.45)

 

b. Log linear regression plot (Adj. R2 = 0.76)

 
 

c. Linear regression residuals

 

 

d. Log linear regression residuals

 
 

Figure S2. Rocky Mountain Forest regression results for linear and log linear models based on 

average daily precipitation during the fire season.  
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a. Linear regression projections

 
 

b. Log linear regression projections

 
 

Figure S3. Estimated future area burned for the Rocky Mountain Forest ecoregion calculated 

using the linear and log linear models with LOCA average daily precipitation during the fire 

season from each of the five CIRA global climate models. 

 

Table S2. Additional relative humidity regressions 
Meteorological 

Variable Regression Equation 
Adjusted 

R2 

RH.ANN(-1) -0.035*BUI(-1) + 0.505*Prec.ANN(-1) + 70.714 0.15 

RH.WIN(-1) 0.894*ln(Prec.WIN) + 4.141 0.57 

RH.FS(-1) -0.798*Tmax.SUM(-1) + 10.929*Prec.FS(-1) + 53.342 0.79 

RH.ANN 3.86*Prec.SUM + 8.956*Prec.WIN + 0.1*DMCmax + 42.455 0.50 
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4. LOCA-based Regression Model Performance Against Historic Data 

 

Table S3. Summary of area burned and dry biomass consumption from wildfire - compared to 

Yue et al. (2013) and historical data 

 

Ecoregion 

Annual average area burned 

(10,000s ha) 

Annual mean dry biomass 

consumption from wildfire (Tg) 

Observed 

(1980-

2004) 

Yue et al. 

2013 

(1986-

2000) 

This work 

(1986-

2000) 

Observed 

(1980-

2004) 

Yue et al. 

2013 

(1986-

2000) 

This work 

(1986-

2000) 

Pacific 

Northwest 
11.2 11.3 10.583 3.94 4.72 2.63 

Nevada 

Mountains 
28.1 30.1 32.189 1.22 1.72 1.87 

Great 

Plains 
6.7 6.9 2.457 1.78 0.89 0.28 

California 

Coastal 
5.4 6.0 5.546 0.64 0.75 0.34 

Desert SW 7.3 6.5 7.638 0.34 0.25 0.19 
Rocky Mtn 

Forest 
24.7 35.9 19.347 5.05 8.63 2.74 

TOTAL 83.3 96.7 77.8 12.97 16.96 8.06 

 

5. Additional Details on Emissions Calculations 

To calculate the quantity and spatial distribution of wildfire-related black carbon (BC) and 

organic carbon (OC) emissions, we followed the process described by Yue et al. (2013). Briefly, 

we first partitioned annual area burned into monthly totals using the observed historic seasonal 

pattern within each ecoregion, assuming that this intra-annual temporal pattern will not change 

significantly over the century. For each month, total area burned was distributed across a 0.5ºx 

0.5º grid. To reflect observed spatial patterns in area burned, 70% of area burned was randomly 

distributed to only 10% of the grid cells while maintaining the historic burn fractions across 

ecosystems from Spracklen et al. (2009). The remaining 30% of area burned was distributed 

evenly to the remaining 90% of grid cells, also while maintaining historic burn fractions.  

We then calculated the total fuel load for each grid cell using the U.S. Forest Service 1 km x1 km 

fuelbed map used by Yue et al. (2013) (described further in McKenzie et al. 2007 and Ottmar et 

al. 2007).  Similarly, fuel consumption rates for each fuel type were determined using Table 4 in 

Spracklen et al. (2009) (see: 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008jd010966 ), and assuming that 

fires burn with 25% of each high, medium, and low severity, and that 25% of the area is left 

unburned. Total biomass consumed was then calculated as the product of the total fuel load, the 

applicable consumption rate, and the area burned for the given grid cell for each month. Finally, 

BC and OC emissions were calculated by applying the biofuel burning emissions factors 

published by Andreae and Merlet (2001). Similar to Yue et al. (2013), we did not address 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008jd010966
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potential effects of wildfires on the biosphere or the impact of climate change on vegetation type 

and extent. 

Table S4: Summary of Wildfire-Attributable Emissions (BC+OC) and Differences from 

Baseline in the Western US (Gg) 
 

 

2000 era (1996-2005) 81 

 CanESM2 CCSM4 GISS-E2-R HadGEM2-ES MIROC5 GCM mean 

RCP 4.5 

2050 era (2046-2055) 92 (+14%) 111 (+37%) 79 (-2%) 111 (+38%) 100 (+25%) 99 (+22%) 

2090 era (2086-2095) 114 (+41%) 97 (+20%) 80 (-1%) 136 (+68%) 110 (+36%) 107 (+33%) 

RCP 8.5 

2050 era (2046-2055) 105 (+30%) 129 (+60%) 87 (+8%) 138 (+71%) 100 (+23%) 112 (+39%) 

2090 era (2086-2095) 113 (+40%) 126 (+56%) 95 (+17%) 169 (+109%) 126 (+57%) 126 (+56%) 

Note: Values in parentheses are changes relative to the 2000 era total emissions. 
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Figure S4: Spatial Summary of BC and OC Emissions Results by GCM and Forecast Era.  Top 

panel is RCP4.5, bottom panel is RCP8.5  
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6. GEOS-Chem Air Quality Results  

 

Due to the computational expense of conducting 300 model simulation years (30 years, two 

climate scenarios, and five GCMs), we ran GEOS-Chem with offline chemistry (aerosol-only), 

which used monthly mean oxidants archived from a previous full-chemistry simulation, 

including OH, NO3, O3, total nitrate, and production and loss rates for H2O2. The lack of full 

chemistry feedback in our simulation could affect the concentrations of secondary aerosols 

(organic and inorganic) that are formed through chemical processes. Therefore, we used 

secondary aerosol concentrations from a full-chemistry simulation for 2013 conducted by Jun et 

al. (2019) using the same meteorological data and emissions as this study to correct for the 

potential bias in the offline simulation. We kept these secondary aerosol concentrations constant 

to 2013 to isolate the impacts of wildfire BC and OC emissions on PM2.5.  Simulated PM2.5 

concentrations were highly consistent with observations in both time and space (Figure S5).   

 

Figure S5. Evaluation of the GEOS-Chem simulated PM2.5 concentrations with observations.  

Left: May-Oct monthly medians concentrations from observations and the GEOS-Chem 

simulation. Observations are averaged over all sites from the Chemical Species Network (CSN) 

and the IMPROVE network, with the locations outlined on the map (right). The GEOS-Chem 

simulated concentrations are for the same time period and are collocated with observations. 

Right: Spatial distribution of PM2.5 median concentrations averaged over May-Oct in 1996-2005. 

Circles represent measurements filled with colors representing observation values. The 

background is the GEOS-Chem simulated concentration. Statistics are normalized mean bias 

(NMB) and normalized mean error (NME).  
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Table S5. Wildfire-Attributable Average PM2.5 Concentrations in the Contiguous US.  The 

estimates are the wildfire-attributable PM2.5 concentrations calculated by subtracting the no-

wildfire surface from indicated “with-wildfire” surfaces by GCM and RCP.  Spatial average is 

average of PM2.5 concentrations across all grid cells in contiguous U.S. Population weighted 

concentrations were weighted by population residing in each grid cell according to year 2000 

ICLUS population with a 2010 Census population distribution.   
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Figure S6. Wildfire-Attributable Annual Average PM2.5 Concentrations (μg/m3) in the 

Contiguous US for RCP4.5 in the 2090 era.  The estimates are the wildfire-attributable PM2.5 

concentrations calculated by subtracting the no-wildfire surface from indicated “with-wildfire” 

surfaces by GCM and RCP. 

  

Baseline CANESM 

CCSM GISS 

HADGEM MIROC 
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7. BenMAP Modeling and Detailed Health Burden Results 

 

Table S6: Summary of long-term mortality incidence by era, GCM, and RCP, with standard 

deviation of interannual values within eras 

Era GCM RCP 

Krewski et 
al. Mean 

Point 
Estimate 
(Ages 30-

99) 

Krewski 
et al. 

Standard 
Deviation 

Lepeule et 
al. Mean 

Point 
Estimate 
(Ages 25-

99) 

Lepeule 
et al. 

Standard 
Deviation 

1996-
2005 

Baseline Baseline 723 40 1639 138 

2050 
(2046-
2055) 

CANESM 
4.5 1948 105 4378 362 

8.5 2380 128 5347 442 

CCSM 
4.5 2319 123 5212 427 

8.5 2620 136 5888 472 

GISS 
4.5 1603 88 3605 307 

8.5 1705 89 3836 308 

HADGEM 
4.5 2223 122 4997 421 

8.5 2689 141 6040 488 

MIROC 
4.5  2019 106 4539 367 

8.5 2000 106 4498 368 

2090 
(2086-
2095) 

CANESM 
4.5 3073 162 6901 560 

8.5 3147 162 7069 563 

CCSM 
4.5 2285 122 5135 422 

8.5 2942 151 6610 524 

GISS 
4.5 2056 109 4623 377 

8.5 2339 121 5257 420 

HADGEM 
4.5 3217 177 7223 612 

8.5 4071 209 9136 722 

MIROC 
4.5 2654 144 5960 497 

8.5  2848 148 6398 512 
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Table S7: Summary of Health Impact Functions Employed, by Health Endpoint 

 

Health Endpoint 

Epidemiological 

study 

Cohort 

age 

(years) 

Cohort 

location 

Risk Estimate 

(95% CI) 

Function 

type 

Mortality, all-cause Krewski et al. (2009) 30-99 116 U.S. 

cities 

RR = 1.06 

(1.04-1.08) per 

10 μg m-3 

Log-linear 

Lepeule et al. (2012) 25-99 6 Eastern U.S. 

cities 

RR = 1.14 

(1.07-1.22) per 

10 μg m-3 

Log-linear 

Zanobetti and 

Schwartz (2009) 

0-99 112 U.S. cities β = 0.000975 

(0.000119) 

Log-linear 

Nonfatal acute 

myocardial 

infarction 

Peters et al. (2001) 18-99 Boston, MA OR = 1.62 

(1.13-2.34) per 

20 μg m-3 

Logistic 

Hospital admissions, 

all respiratory (ICD-

9 277, 460-465, 466, 

480-487, 490, 491, 

492, 493, 494, 495, 

496, 506, 508, 786) 

Delfino et al. (2009) 0-99 Southern 

California 

RR = 1.028 

(1.014-1.041) 

per 10 μg m-3 

Log-linear 

Hospital admissions, 

asthma (ICD-9 493) 

0-99 RR = 1.048 

(1.021-1.076) 

per 10 μg m-3 

Log-linear 

Hospital admissions, 

chronic lung disease 

(less asthma) (ICD-9 

491, 492, 496) 

20-99 RR = 1.038 

(1.004-1.075) 

per 10 μg m-3 

Log-linear 

Emergency hospital 

admissions, all 

respiratory 

(ICD-9 460-519) 

Zanobetti et al. (2009) 65-99 26 U.S. 

communities 

β = 0.00207 

(0.000446) 

Log-linear 

Emergency room 

visits, asthma 

(ICD-9 493) 

Mar et al. (2010) 0-99 Greater 

Tacoma, WA 

RR = 1.04 

(1.01-1.07) per 

7 μg m-3 

Log-linear 

Slaughter et al. (2005) 0-99 Spokane, WA RR = 1.03 

(0.98-1.09) per 

10 μg m-3 

Log-linear 

Acute bronchitis Dockery et al. (1996) 8-12 24 U.S. and 

Canadian 

communities 

OR = 1.50 

(0.91-2.47) per 

14.9 μg m-3 

Logistic 

Upper respiratory 

symptoms 

Pope et al. (1991) 9-11 Utah Valley β = 0.0036 

(0.0015) 

Logistic 

Lower respiratory 

symptoms 

Schwartz and Neas 

(2000) 

7-14 6 U.S. cities OR = 1.33 

(1.11-1.58) per 

15 μg m-3 

Logistic 

Asthma 

exacerbation 

(cough) 

Ostro et al. (2001) 6-18 Los Angeles, 

CA 

OR = 1.03 

(0.98-1.07) per 

30 μg m-3 

Logistic 

Asthma 

exacerbation 

(wheeze) 

OR = 1.06 

(1.01-1.11) per 

30 μg m-3 

Logistic 
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Health Endpoint 

Epidemiological 

study 

Cohort 

age 

(years) 

Cohort 

location 

Risk Estimate 

(95% CI) 

Function 

type 

Asthma 

exacerbation 

(shortness of breath) 

OR = 1.08 

(1.00-1.17) per 

30 μg m-3 

Logistic 

Asthma 

exacerbation 

(cough) 

Mar et al. (2004) 6-18 Spokane, WA OR = 1.21 

(1.00-1.47) per 

10 μg m-3 

Logistic 

Asthma 

exacerbation 

(shortness of breath) 

OR = 1.13 

(0.86-1.48) per 

10 μg m-3 

Logistic 

Hospital admissions, 

all cardiovascular 

(less myocardial 

infarction) (ICD-9 

390-459) 

Zanobetti et al. (2009) 65-99 26 U.S. 

communities 

β = 0.00189 

(0.000283) 

Log-linear 

Hospital admissions, 

all cardiovascular 

(less myocardial 

infarction) (ICD-9 

426-427, 428, 430-

438, 410-414, 429, 

440-449) 

Peng et al. (2009) 65-99 119 U.S. 

counties 

β = 0.00068 

(0.000214) 

Log-linear 

Hospital admissions, 

all cardiovascular 

(less myocardial 

infarction) (ICD-9 

426-427, 428, 430-

438, 410-414, 429, 

440-449) 

Peng et al. (2008) 65-99 108 U.S. 

counties 

β = 0.00071 

(0.00013) 

Log-linear 

Hospital admissions, 

all cardiovascular 

(less myocardial 

infarction) (ICD-9 

426-427, 428, 430-

438, 410-414, 429, 

440-449) 

Bell et al. (2008) 65-99 202 U.S, 

counties 

β = 0.0008 

(0.0001) 

Log-linear 

Hospital admissions, 

all cardiovascular 

(less myocardial 

infarction) (ICD-9 

390–429) 

Moolgavkar (2000) 20-64 Los Angeles, 

CA 

β = 0.0014 

(0.000341) 

Log-linear 

Work loss days Ostro (1987) 18-64 Nationwide β = 0.0046 

(0.00036) 

Log-linear 

Minor restricted 

activity days 

(MRADs) 

Ostro and Rothschild 

(1989) 

18-64 Nationwide β = 0.00741 

(0.0007) 

Log-linear 
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Figure S7. Estimated long-term mortality health burden by GCM compared to trend in 

population forecast.  Thick black line shows ICLUS population estimates, with corresponding 

axis on the right-hand side. Note that y-axes are not set to zero.  Dashed lines are for RCP8.5, 

solid lines are for RCP4.5.  Wildfire risk to mortality grows slower than population from 2000, 

to 2050, and faster than population from 2050 to 2090 for most GCMs.  The exception is CCSM, 

where increased precipitation in the 2090 period suppresses wildfire risk.  Note that mortality 

impact associated with HADGEM model projection shows continuing increases across the 

projection period. 

 

 

The concentration-response relationships used in this analysis are a subset of those used by the 

EPA in the 2012 PM2.5 NAAQS RIA (U.S. EPA 2012). This analysis utilizes ambient PM2.5 

concentration-response functions for health endpoints with a demonstrated link to wildfire 

episodes, based on literature review conducted for this research. Other health endpoints without a 

demonstrated link to wildfire episodes are included as a sensitivity analysis.  

 

Health endpoints in the primary analysis are listed in Tables S9 and S10 and include all-cause 

mortality, nonfatal acute myocardial infarctions, respiratory hospital admissions, respiratory 

emergency room visits, and other respiratory effects (acute bronchitis, asthma exacerbation, and 

upper and lower respiratory symptoms). It should be noted that the all-cause mortality endpoint 

includes multiple health impact functions that estimate effects from both long-term PM2.5 
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exposure (Krewski et al. (2009); Lepeule et al. (2012)) and short-term PM2.5 exposure (Zanobetti 

and Schwartz (2009)) and that these effects are not additive (for the economic valuation step, 

only estimates from Krewski et al. are used).  

 

Table S8: Wildfire-Induced Health Burden (Mortality and Morbidity) – Total Incidence Burden 

(cases per year) for Base Period (1996-2005) and Projected Excess Health Burden Associated 

with Climate-Induced Changes in Wildfire Activity for 2050 and 2090 Projection Period 
 

Health endpoint Author 
Age 

(years) 

Reference 
burden 

(per year) 

Future 
scenario 

10-year averaged excess burden 
relative to reference (per year) 

2050 2090 

Mortality, All Cause 
(short-term) 

Zanobetti and 
Schwartz 

0-99 130 

RCP4.5 
220 

(150,270) 
320 

(220,420) 

RCP8.5 
260 

(160,330) 
390 

(270,560) 

Mortality, All Cause 
(long-term) 

Krewski et al. 30-99 720 

RCP4.5 
1300 

(880,1600) 
1900 

(1300,2500) 

RCP8.5 
1600 

(980,2000) 
2300 

(1600,3300) 

Mortality, All Cause 
(long-term) 

Lepeule et al. 25-99 1600 
RCP4.5 

2900 
(2000,3600) 

4300 
(3000,5600) 

RCP8.5 
3500 

(2200,4400) 
5300 

(3600,7500) 

Acute Myocardial 
Infarction, Nonfatal 

Peters et al. 18-99 500 
RCP4.5 

1000 
(740,1300) 

1500 
(1100,1900) 

RCP8.5 
1200 

(820,1500) 
1800 

(1300,2600) 

HA, All Respiratory Delfino et al. 0-99 350 

RCP4.5 
640 

(430,780) 
940 

(640,1200) 

RCP8.5 
760 

(490,960) 
1100 

(790,1600) 

EHA, All Respiratory Zanobetti et al. 65-99 120 

RCP4.5 
380 

(280,460) 
560 

(400,700) 

RCP8.5 
450 

(310,540) 
660 

(480,910) 

HA, Asthma Delfino et al. 0-99 68 

RCP4.5 
74 

(44,94) 
110 

(71,150) 

RCP8.5 
90 

(52,120) 
140 

(91,200) 

HA, Chronic Lung 
Disease (less Asthma) 

Delfino et al. 20-99 69 

RCP4.5 
150 

(100,180) 
220 

(150,280) 

RCP8.5 
180 

(120,220) 
260 

(180,360) 

Emergency Department 
Visits, Asthma 

Mar et al., Slaughter 
et al. 

0-99 400 

RCP4.5 
310 

(160,410) 
480 

(280,670) 

RCP8.5 
390 

(200,530) 
620 

(380,940) 

Acute Bronchitis Dockery et al. 8-12 1300 

RCP4.5 
770 

(340,1100) 
1300 

(680,1800) 

RCP8.5 
1000 

(440,1400) 
1600 

(950,2600) 
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Upper Respiratory 
Symptoms 

Pope et al. 9-11 24000 

RCP4.5 
14000 

(6100,19000) 
23000 

(12000,33000) 

RCP8.5 
19000 

(8000,26000) 
30000 

(17000,47000) 

Lower Respiratory 
Symptoms 

Schwartz and Neas 7-14 17000 

RCP4.5 
9400 

(4200,13000) 
15000 

(8400,22000) 

RCP8.5 
12000 

(5500,17000) 
20000 

(12000,31000) 

Asthma Exacerbation, 
Cough 

Mar et al., Ostro et 
al. 

6-18 22000 

RCP4.5 
28000 

(5500,62000) 
42000 

(11000,95000) 

RCP8.5 
53000 

(7200,100000) 
63000 

(16000,180000) 

Asthma Exacerbation, 
Shortness of Breath 

Mar et al., Ostro et 
al. 

6-18 30000 

RCP4.5 
17000 

(7400,24000) 
28000 

(15000,41000) 

RCP8.5 
23000 

(9700,32000) 
37000 

(21000,58000) 

Asthma Exacerbation, 
Wheeze 

Ostro et al. 6-18 46000 
RCP4.5 

26000 
(11000,36000) 

43000 
(23000,62000) 

RCP8.5 
35000 

(15000,48000) 
56000 

(33000,89000) 

HA, All Cardiovascular 
(less Myocardial 

Infarctions) 

Zanobetti et al., Peng 
et al. (2008), Peng et 
al. (2009), Bell et al., 

Moolgavkar 

18-99 120 
RCP4.5 

250 
(180,310) 

370 
(260,480) 

RCP8.5 
300 

(190,370) 
440 

(310,620) 

Work Loss Days Ostro 18-64 100000 

RCP4.5 
57000 

(24000,81000) 
98000 

(52000,140000) 

RCP8.5 
77000 

(32000,110000) 
130000 

(74000,200000) 

Minor Restricted 
Activity Days 

Ostro and Rothschild 18-64 610000 

RCP4.5 
340000 

(150000,480000) 
580000 

(320000,830000) 

RCP8.5 
460000 

(200000,640000) 
760000 

(440000,1200000) 
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Table S9: Disaggregation of Mortality, All Cause (long-term) from authors use of Krewski et al. 

function, into climate-influence and influence of changes in population and baseline mortality 

rates, relative to baseline estimates.    

Era GCM RCP 

Total mortality 

point estimate 

using 2000 

Census 

population 

(standard 

deviation) 

Influence of 

climate-

attributable 

wildfires (ratio 

relative to 

baseline)  

Total mortality 

point estimate 

using 2090 

ICLUSv2 

population 

(standard 

deviation) 

Influence of 

population and 

changes in 

baseline 

mortality rates 

(ratio relative to 

baseline)  

Baseline Baseline Baseline 
720  

(40) 
-- -- -- 

2090 

CANESM 

4.5 
1100  

(59) 
1.6 

3100  

(160) 
2.7 

8.5 
1100  

(59) 
1.6 

3100  

(160) 
2.8 

CCSM 

4.5 
840  

(45) 
1.2 

2300  

(120) 
2.7 

8.5 
1100  

(56) 
1.5 

2900  

(150) 
2.7 

GISS 

4.5 
750  

(40) 
1.0 

2100  

(110) 
2.7 

8.5 
860  

(45) 
1.2 

2300  

(120) 
2.7 

HADGEM 

4.5 
1200  

(66) 
1.7 

3200  

(180) 
2.7 

8.5 
1500  

(78) 
2.1 

4100  

(210) 
2.7 

MIROC 

4.5  
990  

(54) 
1.4 

2700  

(140) 
2.7 

8.5 
1100  

(55) 
1.5 

2800  

(150) 
2.7 

 

For mortality endpoints, the EPA’s Guidelines for Preparing Economic Analyses recommends a 

VSL of $7.9 million ($2008) based on 1990 incomes (U.S. EPA, 2014). To create a VSL using 

$2015 and based on 2010 incomes, the standard value was adjusted for inflation and income 

growth based on the approach described in EPA’s BenMAP-CE model and its documentation 

(U.S. EPA, 2018a,b). The resulting value, $9.7 million for 2010 (2015$), was adjusted to future 

years by assuming an income elasticity of VSL of 0.4 (since personal income is not projected, 

GDP per capital is used as a proxy for mean personal income). Projections of U.S. population 

change are described in the main text, while the Emissions Predictions and Policy Analysis 

model (version 6; Chen et al., 2015) was run to generate a projection of GDP growth. Applying 

this standard approach yields the following VSL values: $12.4 million in 2050, and $15.2 million 

in 2090 (in undiscounted 2015$). As more recent literature favors a higher estimate of income 
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elasticity of VSL, we also perform a sensitivity test using an elasticity of 1.0, reflecting 

proportional growth in VSL with gross domestic product per capita. Using an elasticity of 1.0 

compared with 0.4, our estimated costs associated with the mortality burdens are 87% higher in 

2090. The sensitivity analysis suggests that our valuation of the mortality endpoints may be 

conservative. 

All morbidity endpoint estimates were adjusted from 2007$ to 2015$ using BenMAP-CE’s 

default inflation index.  Note that the morbidity valuation performed in this analysis is consistent 

with the valuation methodology used by the EPA in the 2012 PM2.5 NAAQS RIA (U.S. EPA 

2012). Full valuation results are presented in Table S10. 

Table S10. Detailed Health Effect Valuation Results (millions 2005$).  Average across five 

GCMs is presented, with the range across GCMs provided in parentheses below. 

 

Health endpoint 
Health Effect Study 

Author 

Age 

(years) 

Reference 

value 

(per year) 

Future 

scenario 

10-year averaged excess damage 

relative to reference (per year) 

2050 2090 

Mortality, All Cause 

(short-term) 
Zanobetti and Schwartz 0-99 1200 

RCP4.5 
3100 

(2200,3700) 

5600 

(4100,7100) 

RCP8.5 
3600 

(2400,4500) 

6700 

(4800,9300) 

Mortality, All Cause 

(long-term) 
Krewski et al. 30-99 6900 

RCP4.5 
18000 

(13000,22000) 

34000 

(24000,42000) 

RCP8.5 
22000 

(14000,27000) 

40000 

(29000,55000) 

Mortality, All Cause 

(long-term) 
Lepeule et al. 25-99 16000 

RCP4.5 
41000 

(29000,49000) 

75000 

(55000,94000) 

RCP8.5 
48000 

(32000,60000) 

89000 

(64000,120000) 

Acute Myocardial 

Infarction, Nonfatal 

(3% Discount Rate) 

Peters et al. 18-99 45 

RCP4.5 
160 

(120,190) 

220 

(160,270) 

RCP8.5 
180 

(130,220) 

260 

(190,350) 

Acute Myocardial 

Infarction, Nonfatal 

(7% Discount Rate) 

Peters et al. 18-99 43 

RCP4.5 
150 

(110,180) 

210 

(160,270) 

RCP8.5 
180 

(130,210) 

250 

(190,340) 

HA, All Respiratory Delfino et al. 0-99 7.4 

RCP4.5 
26 

(19,31) 

36 

(26,46) 

RCP8.5 
30 

(21,36) 

42 

(31,58) 

EHA, All 

Respiratory 
Zanobetti et al. 65-99 2.7 

RCP4.5 
16 

(12,18) 

22 

(16,27) 

RCP8.5 
18 

(13,21) 

26 

(19,35) 

HA, Asthma Delfino et al. 0-99 0.81 

RCP4.5 
1.9 

(1.3,2.3) 

2.6 

(1.8,3.4) 

RCP8.5 
2.2 

(1.5,2.7) 

3.1 

(2.2,4.4) 

HA, Chronic Lung 

Disease (less 

Asthma) 

Delfino et al. 20-99 1.1 

RCP4.5 
4.5 

(3.3,5.3) 

6.2 

(4.5,7.8) 

RCP8.5 
5.2 

(3.6,6.3) 

7.3 

(5.3,10) 
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Health endpoint 
Health Effect Study 

Author 

Age 

(years) 

Reference 

value 

(per year) 

Future 

scenario 

10-year averaged excess damage 

relative to reference (per year) 

2050 2090 

Emergency 

Department Visits, 

Asthma 

Mar et al., Slaughter et 

al. 
0-99 0.12 

RCP4.5 
0.22 

(0.15,0.28) 

0.31 

(0.21,0.4) 

RCP8.5 
0.27 

(0.17,0.33) 

0.38 

(0.26,0.54) 

Acute Bronchitis Dockery et al. 8-12 0.49 

RCP4.5 
0.54 

(0.33,0.68) 

0.78 

(0.49,1) 

RCP8.5 
0.66 

(0.38,0.85) 

0.96 

(0.63,1.4) 

Upper Respiratory 

Symptoms 
Pope et al. 9-11 0.62 

RCP4.5 
0.68 

(0.41,0.86) 

0.98 

(0.62,1.3) 

RCP8.5 
0.83 

(0.47,1.1) 

1.2 

(0.79,1.8) 

Lower Respiratory 

Symptoms 
Schwartz and Neas 7-14 0.27 

RCP4.5 
0.29 

(0.18,0.37) 

0.42 

(0.27,0.56) 

RCP8.5 
0.35 

(0.21,0.46) 

0.52 

(0.34,0.76) 

Asthma 

Exacerbation, 

Cough 

Mar et al., Ostro et al. 6-18 0.99 

RCP4.5 
2 

(0.65,4) 

2.8 

(0.99,5.9) 

RCP8.5 
3.4 

(0.75,6.2) 

4.1 

(1.3,11) 

Asthma 

Exacerbation, 

Shortness of Breath 

Mar et al., Ostro et al. 6-18 1.3 

RCP4.5 
1.4 

(0.87,1.8) 

2.1 

(1.3,2.8) 

RCP8.5 
1.8 

(1,2.3) 

2.6 

(1.7,3.9) 

Asthma 

Exacerbation, 

Wheeze 

Ostro et al. 6-18 2 

RCP4.5 
2.2 

(1.3,1.8) 

3.2 

(2,4.3) 

RCP8.5 
2.7 

(1.5,3.5) 

4 

(2.6,5.9) 

HA, All 

Cardiovascular (less 

Myocardial 

Infarctions) 

Zanobetti et al., Peng et 

al. (2008), Peng et al. 

(2009), Bell et al., 

Moolgavkar 

18-99 3.3 

RCP4.5 
13 

(9.8,16) 

19 

(14,23) 

RCP8.5 
15 

(11,18) 

22 

(16,30) 

Work Loss Days Ostro 18-64 13 

RCP4.5 
15 

(9.2,19) 

22 

(14,29) 

RCP8.5 
18 

(11,24) 

27 

(18,40) 

Minor Restricted 

Activity Days 
Ostro and Rothschild 18-64 32 

RCP4.5 
34 

(21,44) 

51 

(33,69) 

RCP8.5 
42 

(24,55) 

64 

(41,94) 

 

Presented in Millions USD (2015$). 

 

8. Wildfire Response Costs 

 

In addition to estimating the health impacts of wildfires through contributions to particulate matter 

air pollution, we also estimated changes in wildfire response costs.  The method used is consistent 

with that described in Mills et al. (2014), applying data on the average, regional response cost 

estimates from the National Wildfire Coordinating Group (NWCG), available at the web portal for 

National Geographic Area Coordination Center – National Interagency Fire Center  (GACC-

NIFC). NWCG compiles information in ICS-209 reports for “Significant incidents,” which reflect 
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wildfires burning 100+ acres or involving Incident Management Teams of type 1 or 2.  We used 

geographic coordinate information in the web portal database to compile response costs at the state 

level, and assigned average response costs by state to our area burned estimates described above 

to generate total wildfire response costs for our projection period, as well as annual estimates, for 

each of the five GCMs and two RCPs.  Response costs used in Mills et al. (2014) reflected data 

available for 2002 – 2012; we updated the average regional response costs using newly available 

data for 2002 – 2018, which led to a slight increase in the average response costs for most regions, 

and larger increases for the California regions.   

This analysis used data from the National Wildfire Coordinating Group (NWCG) to monetize the 

projected changes in acreage burned by wildfires. Specifically, the analysis developed spatially 

resolved wildfire response costs from NWCG data on the size (i.e., acres burned), origin, and total 

response costs for distinct wildfires in the contiguous United States (U.S.) from 2002 to 2018.  

Figure S8 provides the Geographic Area Coordination Center (GACC) boundaries used by the 

NWCG to coordinate wildfire responses and to collect and report wildfire-related data (GACC 

2011).  

 

Figure S8. GACC fire region boundaries 

The NWCG provides ICS-209 report summaries for 2002-2018, for each GACC region. Mills et 

al. 2014 also used this data source, but with an earlier vintage which provided costs for the 2002 

– 2010 period.  

Duplication Adjustments: Duplicate fires, with the same incident number, incident name, and 

start date were adjusted. The cost value that was the larger of the two was assumed to be cumulative 

and used for our calculation purposes. A total of 191 duplicates existed, of which only 23 had 

differing cost values. 
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Great Basin region: In the years 2015-2018, Western Great Basin and Eastern Great Basin were 

combined. We manually altered the coding to reflect the two, WB and EB. According to the 

GACC, Nevada made up the Western Great Basin whereas the other states of the Great Basin 

region were part of the Eastern Great Basin. 

Wildfire Mapping: Wildfires are mapped in ArcGIS based on latitude and longitude information 

provided in ICS-209 forms. Less than one percent of all fires do not have latitude and longitude. 

Those fires are excluded from the analysis. Fires with locations that do not fall within the 

contiguous US were also excluded. Some of these fires likely had latitudes and longitudes with 

errors (such as those placed within the Arctic Circle), but there was no clear pattern to the errors 

and thus the location data for these fires could not be reliably corrected. After excluding fires 

outside the contiguous US or without spatial information, 20,812 fires remain in the analysis. Each 

of these fires is assigned to a LOCA 0.5o x 0.5o grid cell. 
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Table S11. Results for Wildfire Response Analysis, Cumulative and Annual Estimates 
 

 

     

     

     

     

     

     

  

   

   

 

National 
Climate 

Assessment 
Region 

Cumulative Acres 
Burned 

(millions of acres) 

Cumulative Response Costs 
(millions of $2015, discounted at 

3%) 

RCP8.5 RCP4.5 RCP8.5 RCP4.5 

Northern 
Plains 

49 45 $4,500 $4,300 

Southern 
Plains 

3 3 $14 $14 

Southwest 150 130 $20,000 $18,000 

Northwest 80 73 $6,500 $6,100 

Total 280 250 $31,000 $29,000 

     

Period 
Annual Response Costs 

(millions of $2015, undiscounted) 

2050 (avg over 2046-2055) $730 $640 

2090 (avg. over 2086-2095) $890 $710 

Note: Estimates are averages over results for each of the full suite of GCMs applied, rounded to 
two significant figures. 


